Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments

نویسنده

  • Steven D. Allison
چکیده

Steven D. Allison Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA Correspondence: E-mail: [email protected] Abstract Extracellular enzymes allow microbes to acquire carbon and nutrients from complex molecules and catalyse the rate-limiting step in nutrient mineralization. Because the factors regulating enzyme production are poorly understood, I used a simulation model to examine how competition, nutrient availability and spatial structure affect microbial growth and enzyme synthesis. In simulations where enzyme-producing microbes competed with cheaters (who do not synthesize enzymes but take-up product), higher enzyme costs favoured cheaters, while lower rates of enzyme diffusion favoured producers. Cheaters and producers coexisted in highly organized spatial patterns at intermediate enzyme costs and diffusion rates. Simulations with varying nutrient inputs showed that nitrogen supply can limit carbon mineralization, microbial growth and enzyme production because of the nitrogen-demanding stoichiometry of enzymes (C : N 1⁄4 c. 3.5 : 1). These results suggest that competition from cheaters, slow diffusion and nitrogen limitation may constrain microbial foraging and the enzymatic decomposition of complex compounds in natural environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracellular enzyme production and cheating in Pseudomonas fluorescens depend on diffusion rates

Bacteria produce extracellular enzymes to obtain resources from complex chemical substrates, but this strategy is vulnerable to cheating by cells that take up reaction products without paying the cost of enzyme production. We hypothesized that cheating would suppress enzyme production in co-cultures of cheater and producer bacteria, particularly under well-mixed conditions. To test this hypothe...

متن کامل

Spatial structure leads to ecological breakdown and loss of diversity.

Spatial structure has been identified as a major contributor to the maintenance of diversity. Here, we show that the impact of spatial structure on diversity is strongly affected by the ecological mechanisms maintaining diversity. In well-mixed, unstructured environments, microbial populations can diversify by production of metabolites during growth, providing additional resources for novel spe...

متن کامل

Microbial secretor-cheater dynamics.

Microbial secretions manipulate the environment and communicate information to neighbours. The secretions of an individual microbe typically act externally and benefit all members of the local group. Secreting imposes a cost in terms of growth, so that cheaters that do not secrete gain by sharing the benefits without paying the costs. Cheaters have been observed in several experimental and natu...

متن کامل

Spatial Structure Facilitates Cooperation in a Social Dilemma: Empirical Evidence from a Bacterial Community

Cooperative organisms are ubiquitous in nature, despite their vulnerability to exploitation by cheaters. Although numerous theoretical studies suggest that spatial structure is critical for cooperation to persist, the spatial ecology of microbial cooperation remains largely unexplored experimentally. By tracking the community dynamics of cooperating (rpoS wild-type) and cheating (rpoS mutant) E...

متن کامل

Microbial enzymatic responses to drought and to nitrogen addition in a southern California grassland

Microbial enzymes play a fundamental role in ecosystem processes and nutrient mineralization. Therefore understanding enzyme responses to anthropogenic environmental change is important for predicting ecosystem function in the future. In a previous study, we used a reciprocal transplant design to examine the direct and indirect effects of drought and nitrogen (N) fertilization on litter decompo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005